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With Monte Carlo simulations, we study the dynamic relaxation at perfect and imperfect surfaces of the
three-dimensional Ising model with an ordered initial state. The time evolution of the surface magnetization,
the line magnetization of the defect line, and the corresponding susceptibilities and second cumulants is
carefully examined. Universal dynamic scaling forms including a dynamic crossover scaling form are identi-
fied at the ordinary, special, and surface phase transitions. The critical exponents �1 of the surface magneti-
zation and �2 of the line magnetization are extracted. The impact of the defect line on the universality classes
is investigated.
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I. INTRODUCTION

In the past decades, the critical behaviors of surfaces have
been extensively studied, and the phase diagram is well es-
tablished �1–4�. The surface effect often plays a crucial role
in experiments and theories, especially for multilayer sys-
tems. Such a topic becomes even more important when
nanoscale materials are concerned. In a recent experiment,
for example, an anomalous temperature profile of the phase
transition was observed in the presence of a ferromagnetic
surface �5�. In the literature, most works concentrate on the
static critical behaviors �6–11� and the critical dynamics in
the long-time regime �12–14�, when the dynamic system
reaches almost or is already in the equilibrium state. The
critical dynamics of a surface in the macroscopic short-time
regime—i.e., when the dynamic system is still far from
equilibrium—has been much less touched.

Meanwhile, the short-time critical dynamics of bulk has
been established in the past decade and successfully applied
to different physical systems �15–27�. Based on the short-
time dynamic scaling form, new techniques for the measure-
ments of both dynamic and static critical exponents as well
as the critical temperature have been developed �17,28–32�.
Recent progress can be found partially in Refs.
�21,23,33–35� and references therein. Naturally, the dynamic
relaxation of surface in the short-time regime is also impor-
tant, and worthwhile for careful studies �4,36�. It is recently
reported that in nonequilibrium states, the surface cluster dis-
solution may take place instead of the domain growth
�37,38�. In these works, the dynamic relaxation starting from
a high-temperature state is concerned. Very recently, it has
been observed that the dynamic relaxation around a surface
shares certain common features with domain-wall motion
�27,35�.

Obviously, the physical phenomena are more compli-
cated, when both a surface and an initial state exist. The
short-time critical dynamics at a surface needs careful theo-
retical analysis and numerical simulations. In this paper, with
Monte Carlo simulations we systematically investigate the

short-time critical dynamics at perfect and imperfect sur-
faces. We extend the universal dynamic scaling form to the
dynamic relaxation at surfaces, starting from an ordered
state. At the ordinary, special, and surface phase transitions,
the dynamic scaling behaviors of the surface magnetization,
the line magnetization of the defect line, and the correspond-
ing susceptibilities and second cumulants are identified.
Around the special transition, a dynamic crossover scaling
form is revealed. The static critical exponent �1 of the sur-
face magnetization and �2 of the line magnetization of the
defect line as well the dynamic exponent z and crossover
exponent � are extracted from the dynamic behavior in the
macroscopic short-time regime. The impact of the defect line
on the universality classes is shown. By the short-time dy-
namic approach, the surface transition and special transition
temperatures can be also detected.

The remaining part of the paper is organized as follows.
In Sec. II, the model and scaling analysis are presented. In
Secs. III and IV, the dynamic relaxation on perfect and im-
perfect surfaces is studied. In Sec. V, the results are summa-
rized.

II. MODEL AND DYNAMIC SCALING ANALYSIS

A. Model

In the absence of an external magnetic field, the Hamil-
tonian of the three-dimensional �3D� Ising model with a line
defect on a free surface can be written as the sum of bulk
interactions, surface interactions, and line interactions:

H = − Jb �
�xyz�

�xyz�x�y�z� − Js�
�xy�

�xyz�x�y�z − Jl�
�y�

�xyz�xy�z,

�1�

where spin � can take values �1 and �¯� indicates a sum-
mation over all nearest neighbors. As shown in Fig. 1�a�, the
last summation runs over all links on the defect lines, the
second summation runs over the surface links excluding
those on the defect lines, and the first summation extends
over all bulk links including those with one site on the sur-
face. Jb, Js, and Jl are the coupling constants for the bulk,
surface, and defect line, respectively. For the ferromagnetic*Corresponding author. zheng@zimp.zju.edu.cn
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materials, Jb and Js are positive. For convenience, we set
Jb=1.0 in this paper.

For a perfect surface—i.e., Jl=Js—it is well known that in
equilibrium, there exists a special threshold rsp. For Js�rsp,
the surface undergoes a phase transition at the bulk transition
temperature Tb, due to the divergent correlation length in the
bulk. This phase transition is called the ordinary transition,
and the critical behavior is independent of Js. This is a strong
universality. For Js�rsp, the surface first becomes ferromag-
netic at the surface transition temperature Ts�Tb, while the
bulk remains paramagnetic. If the temperature is further re-
duced, the bulk becomes also ferromagnetic at Tb. The
former phase transition is called the surface transition, and
the latter is called the extraordinary transition. This phase
diagram is shown in Fig. 1�b�.

It is generally believed that the surface transition belongs
to the universality class of the two-dimensional �2D� Ising
model �1,2�. Around rsp, there occurs the crossover behavior.
At exactly Js=rsp, the surface transition line, ordinary tran-
sition line, and extraordinary transition line meet, and the
surface and bulk become critical simultaneously. This point
is a multicritical point with surface exponents, and the phase
transition is called the special transition. The best estimate of
rsp for the 3D Ising model in equilibrium is 1.5004�20� �39�.

For an imperfect surface, generally speaking, the impact
of imperfection is twofold. Let us take a surface with
random-bond disorder as an example. The randomness may

reduce the surface transition temperature and alter the phase
diagram. For example, the special transition point of the 3D
Ising model with an amorphous surface is located at rsp
=1.70�1� �40�, noticeably larger than rsp=1.5004 for the 3D
Ising model with a perfect surface. Another effect of the
randomness is that it may change the universality class of the
surface. The relevance or irrelevance of random imperfection
on the perfect surface can be assessed by the Harris-type
criterion �41�.

The extended-Harris criterion states that for a surface with
random-bond disorder, the disorder is relevant for �11�0,
but irrelevant for �11�0, with �11 being the critical expo-
nent of the surface heat capacity. Based on this criterion, the
surface disorder of the 3D Ising model is irrelevant at the
ordinary transition due to �11�0. Actually, this was rigor-
ously proved by Diehl, based on the Griffiths-Kelly-Sherman
inequality �42�. The situation is less clear at the special tran-
sition, for �11 is very close to 0. Recent simulations suggest
that �11�0 and hence the disorder is irrelevant �10�. The
irrelevance at the special transition has also been reported in
Ref. �40�. At the surface transition, the surface is equivalent
to the 2D Ising model. The disorder only leads to a logarithm
correction �see Ref. �43� and reference therein�.

For a surface with a defect line, the defect does not shift
the transition temperatures of the surface transition, and
therefore, the special transition point rsp remains unchanged
�44�. In this paper, we only consider the robustness of the
ordinary, special, and surface transitions in the presence of
the defect line—i.e., the possible dependence of the univer-
sality class on the coupling Jl of the defect line. In order to
investigate the surface critical behavior, we apply the peri-
odic boundary condition in the x-y plane and free boundary
condition in the z direction, as shown in Fig. 1�a�.

Let us denote the spin sitting at the site �x ,y ,z� by �xyz.
For the perfect surface, the surface magnetization in Fig. 1�a�
is defined as

m1 =
1

2L2�
xy

L

��xy1 + �xyL� , �2�

where L is the lattice size. For the imperfect surface, the
defect line is placed at the surface position x=L /2, and the
line magnetization in Fig. 1�a� is defined as

m2 =
1

2L
�

y

L

���L/2�y1 + ��L/2�yL� . �3�

In this paper, with Monte Carlo simulations we study the
dynamic relaxation of the 3D Ising model with perfect and
imperfect surfaces starting from an ordered state. The stan-
dard Metropolis algorithm with a single-spin flip is adopted
in the simulations. Therefore, the Monte Carlo dynamics be-
longs to the universality class of the Glauber dynamics. The
numerical results are obtained with lattice sizes up to L
=128. We measure the surface and line magnetization during
the dynamic relaxation and average over 5000–20000 runs
with different random numbers. Error bars are estimated by
dividing the total samples into two or three subgroups and by
measuring the exponents at different time intervals. Most
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FIG. 1. �a� Schematic view of the 3D Ising model with the free
surfaces at z=1 and L �shadowed�. The defect lines at x=L /2
�dashed� are on the surfaces. The solid circles are spins at the bulk
while the open circles are spins at the surfaces. �b� Schematic phase
diagram of the semi-infinite 3D Ising model. Tb is the bulk transi-
tion temperature.

S. Z. LIN AND B. ZHENG PHYSICAL REVIEW E 78, 011127 �2008�

011127-2



simulations are carried out on the Dawning 4000A super-
computer, and the total CPU time is about 3 node-year.

B. Dynamic scaling analysis

For a dynamic process, in which the system is initially in
a high-temperature state, suddenly quenched to the critical
temperature, and then released to the dynamic evolution of
model A, one expects that there exist universal scaling be-
haviors already in the macroscopic short-time regime �15�.
This has been shown theoretically and numerically in a va-
riety of statistical systems �15–17,21�, and it explains also
the spin-glass dynamics. Furthermore, the short-time dy-
namic scaling behavior has been extended to the dynamic
relaxation with an ordered initial state or a semiordered ini-
tial state, based on numerical simulations �17,27,35�. Recent
renormalization group calculations also support the short-
time dynamic scaling form for an ordered initial state �25�.

On the other hand, Ritschel and Czerner have generalized
the short-time critical dynamics to the magnetic system with
a free surface and derived the dynamic scaling form for the
dynamic relaxation with a high-temperature initial state �36�.
Recent developments can be found in Refs. �37,38�. In this
paper, we alternatively focus on the dynamic relaxation with
an ordered initial state and with perfect and imperfect sur-
faces. As pointed out in the literature �17,20�, the fluctuation
is less severe in this case. It helps one obtain a more accurate
estimate of the critical exponents at the surface. From a the-
oretical point of view, it is also interesting to study the dy-
namic relaxation with an ordered or even a more general
initial state �25,27,35�.

Similar to the scaling analysis at bulk �15,17,25,31,45�,
we phenomenologically assume that for the dynamic relax-
ation with an ordered initial state, the surface magnetization
at a transition temperature decays by a power law

�m1�t�� � t−�1/�szs, �4�

which holds already in the macroscopic short-time regime,
after a microscopic time scale tmic. Here �¯� represents the
statistical average, �1 is the static exponent of the surface
magnetization, �s is the static exponent of the spatial corre-
lation length, and zs is the dynamic exponent of the Glauber
dynamics. For the ordinary and special transitions, where the
criticality of the surface originates from the divergent corre-
lation length in the bulk, there are no genuine new surface
dynamic exponent zs and static exponent �s. In other words,
�s and zs are just the same as those in the bulk, �s=�3D and
zs=z3D. On the other hand, �1 is neither that of the 2D Ising
model nor that of the 3D Ising model �12�. For the surface
transition, where the critical fluctuation of the surface is of
the universality class of the 2D Ising model, it is generally
believed that all static and dynamic exponents are the same
as those of the 2D Ising model with the Glauber dynamics
�1,2�—i.e., �1=�2D=1 /8, �s=�2D=1, and zs=z2D	2.16�1�
�17�.

Another important observable is the second moment of
the surface magnetization, or the time-dependent surface sus-
ceptibility, defined as

	11 = Ld−1��m1
2� − �m1�2� . �5�

Simple finite-size scaling analysis �17,31,45� reveals

	11�t� � t
11/�szs. �6�

Here the exponent 
11 /�s is related to �1 /�s by 
11 /�s=d
−1−2�1 /�s, with d=3 being the spatial dimension of the
bulk. This is nothing but the scaling law in equilibrium be-
tween the exponent of the surface susceptibility and that of
the surface magnetization. Therefore, one can also under-
stand the scaling behavior in Eq. �6� in an intuitive way. In
equilibrium, the surface susceptibility 	11 of a finite lattice
behaves as 	11�L
11/�s. In the dynamic evolution, 	11�t�
should evolve with the nonequilibrium spatial correlation
length ��t� by 	11�t����t�
11/�s, for the finite-size effect is
negligible. Then the growth law ��t�� t1/zs immediately leads
to Eq. �6�.

Alternatively, one can construct the second cumulant
U�t�= �m1

2� / �m1�2−1. Obviously, U�t�� t�
11+2�1�/�szs. From
the scaling law �
11+2�1�= �d−1��s, the scaling behavior of
U�t� then comes to the standard form �17,45�,

U�t� � t�d−1�/zs, �7�

with d−1 being the spatial dimension of the surface.
Equations �4�, �6�, and �7� above involve the bulk expo-

nents �s and zs. Therefor an accurate estimate of the surface
critical exponent �1 needs precise values of �3D and z3D, as
well as z2D. Since the 3D Ising model at bulk has been ex-
tensively studied with various methods, many accurate re-
sults of the critical exponents and transition temperature are
available. In this paper, we mainly concentrate our attention
on the surface exponents and basically take the bulk expo-
nents as input. We summarize the results of the bulk expo-
nents of the 3D Ising model in Table I. The criteria to choose
those values are their relative accuracy, as well as the meth-
ods used to extract the exponents.

From Eqs. �4� and �6�, or from Eqs. �4� and �7�, we obtain
independent measurements of two critical exponents—e.g.,
�1 /�s and zs. Alternatively, if we take �s and zs as input, we
have two independent estimates of the static exponent �1 of
the surface magnetization. This may testify to the consis-
tency of our dynamic scaling analysis.

It is straightforward to show that the dynamic scaling
forms of the line magnetization and line susceptibility have
the same forms as those of the surface observables. We de-
note the exponents of the line magnetization and line suscep-
tibility as �2 and 
22, respectively. The exponent 
22 /�s is
related to �2 /�s by 
22 /�s=d−2−2�2 /�s, and the second
cumulant behaves as U�t�� t�d−2�/zs.

TABLE I. The bulk critical temperature and critical exponents
of the 3D Ising model.

Tb �3D z3D

4.5115248�6� �52� 0.6298�5� �53� 2.042�6� �45�
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III. SHORT-TIME DYNAMICS AT A PERFECT SURFACE

In this section we study the nonequilibrium critical dy-
namics at a perfect surface—i.e., Jl=Js. To investigate the
critical behavior of the surface, it is important to know the
special transition point rsp. For a perfect surface of the 3D
Ising model, there exist rather accurate estimates of rsp from
numerical simulations in equilibrium—e.g., rsp=1.5004�20�
in Ref. �39�. We adopt this value as the special transition
point. As will be illustrated later, the special transition point

rsp can be also extracted from the scaling plot of a dynamic
crossover scaling form.

For the ordinary phase transition, the dynamic relaxation
of the surface magnetization with different Js is shown in
Fig. 2�a�. Here we keep in mind that we have set Jb=1. The
curves of Js=1.0 with L=40 and L=80 overlap up to t
�300 MCS �Monte Carlo sweeps�. It indicates that the
finite-size effect is negligibly small for L=80 at least up to
t�1200 MCS, for the correlating time of a finite system
increases by tL�Lz. In Fig. 2�a�, a power-law behavior is
observed for all Js. The microscopic time scale tmic, after
which the short-time universal scaling behavior emerges, or
in other words, after which the correction to scaling is neg-
ligible, gradually increases as the surface coupling is being
enhanced. For Js=0.2, tmic	10 MCS, while for Js=1.2, tmic
	100 MCS.

By fitting the curves in Fig. 2�a� to Eq. �4�, we obtain
�1

ord=0.790�7�, 0.792�6�, 0.795�6�, 0.786�6�, and 0.755�12�
for Js=0.2, 0.5, 0.8, 1.0, and 1.2, respectively. The values of
�1

ord for Js=0.2, Js=0.5, and Js=0.8 are consistent with each
other within errors. It indicates that the ordinary transition is
universal over a wide range of Js. Deviation occurs for Js
�1.0 and manifests itself as the effect of the crossover to the
special transition. This is in agreement with the observation
in Ref. �8�. From our analysis, �1

ord=0.795�6� is a good esti-
mate for the ordinary transition. In Table II, we compile all
the existing results obtained with numerical simulations and
analytical calculations in equilibrium and our measurements
from the nonequilibrium dynamic relaxation. A reasonable
agreement in �1

ord is observed. Part of the statistical error in
our measurements is from the input of the bulk exponents �s
and zs.

Now one may proceed to investigate the time-dependent
susceptibility 	11�t�. In the case of the ordinary transition of
the 3D Ising model, however, 
11 is negative. According to
Eq. �6�, 	11�t� should decay during the time relaxation. For
the ordered initial state, however, 	11�0�=0. Therefore, 	11�t�
practically fluctuates around 0 and the power-law behavior in
Eq. �6� could not be observed. Nevertheless, 
11 is positive at
the special transition, and the situation is different. The
power-law behavior of the surface susceptibility and second
cumulant can be detected.

In Figs. 2�a� and 2�b�, the surface magnetization, surface
susceptibility and second cumulant are displayed at the spe-
cial transition Js=rsp. A power-law behavior is observed for
all three observables. From the slope of the curve of the
surface magnetization, we measure �1

sp /�szs=0.171�2� and
then obtain �1

sp=0.220�3� with �s and zs in Table I as input.
From the curve of the surface susceptibility, we measure

TABLE II. The surface critical exponents for the ordinary and special transitions of the 3D Ising model, obtained with different
techniques: MF, mean-field methods; MC, Monte Carlo simulations; FT, field-theoretical methods; CI, conformal invariance. The data
marked with an asterisk ��� are calculated with the scaling law 2�1+
11= �d−1��s.

MF �1� MC �8� MC �9� MC �48� MC �10� MC �54� MC+CI �52� FT �55� This work

�1
ord 1 0.78�2� 0.807�4� 0.80�1� 0.796�1� 0.798�5� 0.796 0.795�6�

�1
sp 1 /2 0.18�2� 0.238�2� 0.229�1� 0.237�5� 0.263 0.220�3�


11
sp 1 /2 0.96�9� 0.788�1� 0.802�3�* 0.785�11�* 0.734 0.823�4�
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FIG. 2. �a� Dynamic relaxation of the surface magnetization at
the ordinary transition with various Js and at the special transition at
Js=rsp=1.5004 plotted on a double-logarithmic scale. The tempera-
ture is set to the critical temperature Tb of the bulk, and the lattice
size is L=80. Open circles are the data for Js=1.0 and L=40. Far
away from the special transition point, the slope of the curves is
independent of Js. �b� Dynamic relaxation of the surface suscepti-
bility and second cumulant at the special transition plotted on a
double-logarithmic scale. The lattice size is L=128.
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11
sp /�szs=0.640�3� and then calculate 
11

sp =0.823�4�. From
the scaling law 
11 /�s=d−1−2�1 /�s, one derives �1

sp

=0.218�2�, which is in good agreement with �1
sp=0.220�3�

estimated from the direct measurement. The scaling behav-
iors in Eqs. �4� and �6� indeed hold.

The remarkable feature of the second cumulant on the
surface is that its scaling behavior in Eq. �7� does not involve
the exponent �1 of the surface magnetization. From the curve
in Fig. 2�b�, we obtain �d−1� /zs=0.996�11� and then calcu-
late the dynamic critical exponent zs=2.01�2�. This value of
zs is very close to z3D=2.04�1� measured in numerical simu-
lations in the bulk, and it confirms that the dynamic exponent
on the surface is the same as that in the bulk.

In order to describe the dynamic behavior of the surface
magnetization around rsp, we need to introduce a crossover
scaling form. To understand the crossover behavior in non-
equilibrium states, we first recall the crossover scaling form
in equilibrium. In equilibrium, m1�
� near the special transi-
tion is described by a crossover scaling form

m1�
�
−�1
sp

= Meq„

−��Js − rsp�… , �8�

where 
=1−T /Tb is the reduced temperature, � is the cross-
over exponent, and Meq is the scaling function in equilib-
rium. From the crossover scaling form of m1�
�, one can
determine the special transition point rsp as well as �1

sp and �
�8�. Nevertheless, up to now it has not been studied whether
there also exists a corresponding crossover scaling form in
nonequilibrium states. Here we will verify that such a dy-
namic crossover scaling form indeed exists. For simplicity,
we consider the case when Js approaches the special transi-
tion from Js�rsp and the system is at the bulk critical tem-
perature. Now the nonequilibrium spatial correlation length
��t�� t1/z takes the place of the equilibrium spatial correla-
tion length 
−�. By substituting t−1/�szs for 
 into Eq. �8�, we
obtain

m1�t�t�1
sp/�szs = Mneq„t

�/�szs�Js − rsp�… , �9�

where Mneq is the scaling function in nonequilibrium. Fol-
lowing the ideas in Refs. �23,32,46�, one should be able to

determine the multicritical point rsp and the exponents �1
sp

and � from the dynamic crossover scaling form in Eq. �9�.
For this purpose, we perform the simulations at Js=1.30,
1.35, 1.37, 1.40, 1.43, 1.45, 1.47, and 1.49 and make a scal-
ing plot according to Eq. �9�. This is demonstrated in Fig. 3.
All curves of different Js collapse into a single master curve,
and it indicates that Eq. �9� does describe the crossover be-
havior during the dynamic relaxation. The scaling plot in
Fig. 3 yields the exponents �=0.52 and �1

sp=0.220, as well
as the special transition point rsp=1.50. The crossover expo-
nent � is very close to the mean-field value 0.5 �8�, and �1

sp

and rsp are in agreement with the existing results from the
numerical simulations in equilibrium in Table II and in Ref.
�39�. Although the precision of rsp and critical exponents
obtained here are not very high, it is still theoretically inter-
esting. The dynamic crossover scaling form in Eq. �9� should
be general, and hold in various statistical systems.

To carry out the simulation at the surface transition, we fix
Js at 2.0, well above rsp. At the surface transition, where the
critical fluctuation is essentially two dimensional, �s and zs in
Eq. �4� are just �2D and z2D. Around the transition tempera-
ture, the surface magnetization obeys a dynamic scaling form

-1.2 -0.8 -0.4 0

t
φ/ν

s
z

s

0.5

1

J
s
=1.30

J
s
=1.35

J
s
=1.37

J
s
=1.40

J
s
=1.43

J
s
=1.45

J
s
=1.47

J
s
=1.49

t
β/ν

s
z

sm
1
(t)

(J
s
- r

sp
)

Special transition

Perfect surface

r
sp

= 1.5004

FIG. 3. Scaling plot of m1�t� according to Eq. �9� around the
special transition at Js=rsp=1.5004. The time window in this plot is
within �10, 1000�. The temperature is set to the critical temperature
Tb of the bulk, and the lattice size is L=80.
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FIG. 4. �a� Determination of the surface transition temperature
Ts for Js=2.0. The dashed line is a power-law fit to the curve of
T=4.955. The lattice size is L=80. �b� Dynamic relaxation of the
surface susceptibility and second cumulant at the surface transition
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law fits to the curves. The lattice size is L=80.
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�m1�t��� t−�1/�szsF�t1/�szs
� �17�. To determine the surface
transition temperature Ts, one may search for the curve of
�m1�t�� around Ts with the best power-law behavior; then, the
corresponding temperature is identified as the transition tem-
perature Ts. We perform the simulations with three tempera-
tures around the transition temperature Ts and measure the
surface magnetization. The results are displayed in Fig. 4�a�.
Interpolating the surface magnetization to other temperatures
around these three temperatures, one finds the best power-
law behavior of the surface magnetization at Ts=4.955. The
corresponding slope of the curve gives �1 /�szs=0.0570�10�
at Ts=4.955, and it is in agreement with the value 0.0579�3�
in the 2D Ising model �17�. Therefore we take Ts=4.955 as
the surface transition temperature, which is consistent with
Ts=4.9575�75� obtained with Monte Carlo simulations in
equilibrium �47�.

The time-dependent second cumulant U and susceptibility
	11 at the surface transition are measured and displayed in

Fig. 4�b�. The slope of the second cumulant is 0.916�15�, in
good agreement with 2 /z2D=0.926�9� of the 2D Ising model
�17�. The slope of the susceptibility is 0.824�10�, consistent
with 
2D /z2D=0.810�8� of the 2D Ising model. We thus con-
firm that the surface transition belongs to the universality
class of the 2D Ising model. Meanwhile, Ts=4.955 is a good
estimate of the surface transition temperature.

IV. SHORT-TIME DYNAMICS
AT AN IMPERFECT SURFACE

In this section we investigate the nonequilibrium critical
dynamics at an imperfect surface—i.e., Jl�Js. The static and
dynamic properties of an imperfect surface are important and
interesting, because real surfaces are often rough, due to the
impurity or limitation of experimental conditions �4�. Fur-
thermore, the advance in nanoscience allows one to create
artificial structures on top of films. We study the line defect
on a surface, but the procedure can be easily generalized to
other extended defects.

We first consider the dynamic behavior of the line mag-
netization m2�t� at the ordinary transition. For convenience,
we fix Js=Jb=1.0. The profiles of m2�t� with Jl /Js=0.5, 1.0,
and 1.5 are depicted in Fig. 5�a�. All lines look parallel to
each other, and it indicates that they may belong to a same
universality class. By fitting these curves to the power law in
Eq. �4�, we estimate �2

ord=0.792�18�, 0.786�6�, and
0.797�33� with Jl /Js=1.5, 1.0, and 0.5, respectively. These
values are consistent with each other and in agreement with
�1

ord of the perfect surface reported in the previous section. It
confirms that the defect in the ordinary transition is irrelevant
in terms of the renormalization group argument. This conclu-
sion echoes that in Ref. �40�, where the impact of random
bonds on the surface is investigated in equilibrium. The
short-time dynamic approach shows its merits in identifying
the universal behavior of the surface magnetization
�40,47–49�. Here we note that the line magnetization is one
dimensional and therefore somewhat more fluctuating than
the surface magnetization.
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FIG. 5. �a� Dynamic relaxation of the line magnetization with
various Jl plotted on a double-logarithmic scale for the ordinary
transition at the imperfect surface. The slope of the curves is inde-
pendent of Jl. �b� Dynamic relaxation of the line magnetization with
various Jl plotted on a double-logarithmic scale for the special tran-
sition Js=rsp=1.5004 at the imperfect surface. The open circles
show a fit according to Eq. �10� with a power-law correction to
scaling. The inset displays the line magnetization at Jl=1.6Js, but
with a longer simulation time. The lattice size is L=128. The slope
of the curves is dependent on Jl even after taking the correction to
scaling into account.
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and the results are given in Table III.
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Now we turn to the special transition. We perform simu-
lations with various Jl at the special transition, and the results
of the line magnetization are presented in Fig. 5�b�. From the
slopes of the curves, one measures the exponent �2

sp /�szs and
then calculates �2

sp=0.260�4�, 0.230�3�, 0.219�5�, 0.204�6�,
and 0.162�3� for Jl /Js=0.4, 0.8, 1.0, 1.2, and 1.6, respec-
tively, with �s and zs taken as input from Table I. Obviously
�2

sp changes continuously with Jl.
Since there exists a certain deviation from a power law in

a shorter time for the curves with a larger ratio Jl /Js in Fig.
5�b�, one may wonder whether the variation in �2

sp may stem
from the correction to scaling induced by the defect line.
Therefore, a careful analysis of the correction to scaling is
necessary in this case. Assuming a power-law correction to
scaling, m2�t� should evolve according to

m2�t� = at−�2
sp/�szs�1 − bt−c� , �10�

where a, b, and c are constants. As shown in Fig. 5�b�, such
an ansatz fits the numerical data well and yields �2

sp

=0.258�1�, 0.235�7�, 0.228�3�, 0.214�6�, and 0.171�3� for
Jl /Js=0.4, 0.8, 1.0, 1.2, and 1.6, respectively. For Jl /Js=1.6,
we extend our simulations up to a maximum time t
=10 000 MCS to gain more confidence on our results. Still
�2

sp varies continuously with Jl, and the strong universality is
violated. This is different from the case of a surface with
random bonds, where the generalized Harris criterion states
that the short-range randomness on the surface is irrelevant
at the special transition �41�. Our result is, however, not sur-
prising, for the defect line is not a short-range randomness
�4�, but an extended one. The defect line does modify the
surface universality class. This can also be understood as
follows. The reduction of the coupling in the defect line is
somewhat like turning the local surface from the special tran-
sition to the ordinary one and therefore gives rise to a larger
value of the critical exponent �2

sp.
To investigate the impact of the line defect at the surface

transition, we fix Js=2.0. We measure the time evolution of
the line magnetization at the surface transition temperature
Ts=4.955 with Jl /Js=0.5, 1.0, 1.5, and 2.0, respectively. In
Fig. 6, one observes that after a microscopic time tmic	100
MCS, the power-law behavior emerges. However, the expo-
nent �2 is Jl dependent and the strong universality is vio-
lated. This is similar to the case in Refs. �47,49�, where a
nonuniversal behavior of the edge and corner magnetization
has been found at the surface transition.

Since the surface transition is essentially two dimensional,
one may relate this imperfect surface to the 2D Ising model
with a defect line. The violation of the strong universality of
the 2D Ising model with a line or a ladder defect is rigor-
ously proved by Bariev �50�. For the line defect, exact cal-
culations show that

TABLE III. Critical exponents of the defect line at the surface transition of the 2D Ising model. �s

=�2D=1 and zs=z2D=2.16�1� have been taken as input �17�.

Exponent

Line magnetization
�2 /�szs

Susceptibility

22 /�szs

Second cumulant
1 /zs

Simulation Theory Simulation Theory Simulation Theory

Jl=0.5Js 0.0923�36� 0.0936�9� 0.282�4� 0.276�3� 0.462�2� 0.463�4�
Jl=1.0Js 0.0570�10� 0.0579�5� 0.356�5� 0.347�3� 0.475�2� 0.463�4�
Jl=1.5Js 0.0301�24� 0.0307�3� 0.405�4� 0.402�4� 0.468�2� 0.463�4�
Jl=2.0Js 0.0149�12� 0.0145�1� 0.428�9� 0.434�4� 0.459�9� 0.463�4�
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FIG. 7. �a� Dynamic relaxation of the line susceptibility with
various Jl at the surface transition plotted on a double-logarithmic
scale. The dashed lines are power-law fits. The slopes of the curves
are Jl dependent, and the results are given in Table III. �b� Dynamic
relaxation of the second cumulant of the line magnetization with
various Jl at the surface transition plotted on a double-logarithmic
scale. The dashed lines are power-law fits. The slopes of the curves
are Jl independent, and the results are given in Table III.
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�2 =
2

�2 arctan2��l� , �11�

with

�l = exp�− 2�Jl − J�/kBT2D� . �12�

J is the strength of the unperturbed interactions, and T2D is
the critical temperature of the 2D Ising model. Theoretically,
the critical exponent �2 reduces monotonically when the de-
fect coupling Jl is enhanced. We measure the exponent �2
and compare it with the exact values obtained from Eqs. �11�
and �12�. The results are summarized in Table III. One finds
good agreement between the numerics and exact solution. A
similar behavior of the edge magnetization, which can be
viewed as a line defect at the surface transition, is also ob-
served in Ref. �47�. Our results support the conjecture that at
the surface transition, the critical exponent �2 changes in the
presence of a small perturbation.

Finally, the susceptibility 	22�t� and second cumulant
U22�t� of the line magnetization, which are similarly defined
as those of the surface magnetization, are also measured. The
results are plotted in Figs. 7�a� and 7�b�. As stated in Sec. II,
one may show that 	22�t�� t
22/�szs and U22�t�� t�d−2�/zs, with

22 /�s=d−2−2�2 /�s. The estimated exponents are also
compiled in Table III, and a good consistency with the theory
can be spotted.

V. CONCLUSION

With Monte Carlo simulations, we study the dynamic re-
laxation on perfect and imperfect surfaces of the 3D Ising
model, starting from an order initial state. On the perfect
surface, the dynamic behavior of the surface magnetization,

susceptibility, and second cumulant is carefully analyzed at
the ordinary, special, and surface transitions. The universal
dynamic scaling behavior is revealed, and the static exponent
�1 of the surface magnetization, the static exponent 
11 of
the surface susceptibility, and the dynamic exponent zs are
estimated. All the results for �1 and 
11 are compiled in
Table II. Since the exponents �s and zs can be identified as
those at the bulk, it is convenient to study different phase
transitions from the nonequilibrium dynamic relaxation. Es-
pecially, the dynamic crossover scaling form in Eq. �9� is
interesting. Because of the existence of the scaling variable
Js, the dynamic relaxation of the surface magnetization
around the special transition does not obey a power law and
the deviation from the power law is governed by the cross-
over exponent.

On the imperfect surface—i.e., with a defect line on the
surface—the universality class of the ordinary transition re-
mains the same as that at the perfect surface. On the other
hand, at the special and surface transitions, the critical expo-
nent �2 of the line magnetization varies with the coupling
constant Jl of the defect line. The susceptibility and second
cumulant of the line magnetization also exhibit the dynamic
scaling behavior and yield the static exponent 
22 and the
dynamic exponent zs. The short-time dynamic approach is
efficient in understanding the surface critical phenomena.
Furthermore, one may compare the critical dynamics at a
surface with that of a domain interface �27,35,51�.
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